Lie symmetries and exact solutions of barotropic vorticity equation
نویسندگان
چکیده
The Lie group method is used in order to investigate various issues related to symmetries and exact solutions of the barotropic vorticity equation. This is done in a similar but more systematic and complete way as given by Huang and Lou [Phys. Lett. A. 320 (2004) 428–437]. The Lie symmetries of the barotropic vorticity equations on the f and β-planes as well as on the sphere in rotating and resting reference frames are determined. A symmetry background for reduction of the rotating reference frame to the resting one is presented. Oneand two-dimensional inequivalent subalgebras of the Lie invariance algebras of both equations are exhaustively classified and then used to compute invariant solutions of the vorticity equations. This gives large classes of exact solutions, which include both Rossby and Rossby–Haurwitz waves as special cases. We also discuss the possibility of partial invariance for the β-plane equation, to further extend the family of its exact solutions.
منابع مشابه
Exact solutions for Fokker-Plank equation of geometric Brownian motion with Lie point symmetries
In this paper Lie symmetry analysis is applied to find new solution for Fokker Plank equation of geometric Brownian motion. This analysis classifies the solution format of the Fokker Plank equation.
متن کاملPolynomial and non-polynomial solutions set for wave equation with using Lie point symmetries
This paper obtains the exact solutions of the wave equation as a second-order partial differential equation (PDE). We are going to calculate polynomial and non-polynomial exact solutions by using Lie point symmetry. We demonstrate the generation of such polynomial through the medium of the group theoretical properties of the equation. A generalized procedure for polynomial solution is pr...
متن کاملNew Solutions for Fokker-Plank Equation of Special Stochastic Process via Lie Point Symmetries
In this paper Lie symmetry analysis is applied in order to find new solutions for Fokker Plank equation of Ornstein-Uhlenbeck process. This analysis classifies the solutions format of the Fokker Plank equation by using the Lie algebra of the symmetries of our considered stochastic process.
متن کاملA Diffusion Equation with Exponential Nonlinearity Recant Developments
The purpose of this paper is to analyze in detail a special nonlinear partial differential equation (nPDE) of the second order which is important in physical, chemical and technical applications. The present nPDE describes nonlinear diffusion and is of interest in several parts of physics, chemistry and engineering problems alike. Since nature is not linear intrinsically the nonlinear case is t...
متن کاملLie symmetry analysis for Kawahara-KdV equations
We introduce a new solution for Kawahara-KdV equations. The Lie group analysis is used to carry out the integration of this equations. The similarity reductions and exact solutions are obtained based on the optimal system method.
متن کامل